
Computers & Operations Research 36 (2009) 1356–1375
www.elsevier.com/locate/cor

The multi-period incremental service facility location problem

Maria Albareda-Sambolaa,∗, Elena Fernándeza, Yolanda Hinojosab, Justo Puertoc

aStatistics and Operations Research Department, Technical University of Catalonia, Spain
bDepartamento Economía Aplicada I, Universidad de Sevilla, Spain

cFacultad de Matemáticas, Universidad de Sevilla, Spain

Available online 10 March 2008

Abstract

In this paper we introduce the multi-period incremental service facility location problem where the goal is to set a number of new
facilities over a finite time horizon so as to cover dynamically the demand of a given set of customers. We prove that the coefficient
matrix of the allocation subproblem that results when fixing the set of facilities to open is totally unimodular. This allows to solve
efficiently the Lagrangean problem that relaxes constraints requiring customers to be assigned to open facilities. We propose a
solution approach that provides both lower and upper bounds by combining subgradient optimization to solve a Lagrangean dual
with an ad hoc heuristic that uses information from the Lagrangean subproblem to generate feasible solutions. Numerical results
obtained in the computational experiments show that the obtained solutions are very good. In general, we get very small percent
gaps between upper and lower bounds with little computation effort.
� 2008 Elsevier Ltd. All rights reserved.

Keywords: Discrete facility location; Lagrangean dual; Multiperiod location

1. Introduction

Locational decisions are proven to be among the most important strategic decisions in the design and management
of supply chains since they have a long lasting effect on a company. Therefore, developing efficient tools to guide the
locational phase of the decision-making process is crucial to improve supply chain planning and control.

Multi-period location problems are being investigated since the early papers by Warszawski [1] and van Roy and
Erlenkotter [2], up to the more recent references by Daskin et al. [3], Galvão and Santibañez-González, [4] and by
Current et al. [5], among others. Most of these approaches have been used for the design of supply structures by
deciding which existing facilities should be closed and where new facilities should be opened. In this case, not only the
transportation plan but also the time-staged establishment of the facilities are decision variables (see, e.g., Chardaire et
al. [6], Drezner [7], Hinojosa et al. [8,9]). However, some modeling aspects still require further attention. In this work
we shall focus on one of them. In particular, how to address incremental customer service within a planning horizon.

In actual world, it is usual to look for sequential decisions that ensure certain level of coverage at each time period. In
the case of essential services, it is required that the population demand be serviced from the first time period. Different
works have addressed situations of this type (see the above references). However, in the case of non-essential services

∗ Corresponding author.
E-mail addresses: maria.albareda@upc.edu (M. Albareda-Sambola), e.fernandez@upc.edu (E. Fernández), yhinojos@us.es (Y. Hinojosa),

puerto@us.es (J. Puerto).

0305-0548/$ - see front matter � 2008 Elsevier Ltd. All rights reserved.
doi:10.1016/j.cor.2008.02.010

http://www.elsevier.com/locate/cor
mailto:maria.albareda@upc.edu
mailto:e.fernandez@upc.edu
mailto:yhinojos@us.es
mailto:puerto@us.es

M. Albareda-Sambola et al. / Computers & Operations Research 36 (2009) 1356–1375 1357

the full population needs to be serviced only at the end of the planning horizon. Instead, strategic and managerial
decisions require that a pre-specified fraction of the population be reached at each time period, and that the demand of
covered customers remains satisfied in the subsequent periods. We are not aware of any previous work that addressed
this type of model.

It is clear that these types of problems represent actual applications. The simplest application is the sequential optimal
location plan and distribution pattern of a good or service to reach full coverage of a set of potential customers in a
finite time horizon. This is, for instance, the case of non-essential services like libraries, nursing homes, kindergartens,
parking lots, supermarkets, banks, etc., that are planned to provide service to the entire set of potential customers. It is
clear that the nature of these applications requires that service to users cannot be interrupted, in the remaining planning
horizon, once it has been started. Nevertheless, budget constraints avoid to achieve complete coverage in one single
period and therefore, an optimal plan is needed to fulfil the full service goal while ensuring partial achievements at
minimum cost over the whole planning horizon.

In this paper we introduce the Multi-period Incremental Service Facility Location Problem, MISFLP for short. The
considered problem is quite general and it includes as particular cases some interesting difficult problems. Mainly, we
focus on the modeling issues and we propose a solution procedure for MISFLP. The MISFLP consists of minimizing
the total costs throughout a finite time planning horizon while ensuring that at each single period, t, a minimum number
of customers, nt , is served. We accept that the allocation of any customer to the servers might change in different
time epochs. Nevertheless, once a customer is being served in a period he/she must be served at any subsequent
period. Moreover, we assume that exactly pt new facilities are opened in each time period and that once a facility is
opened at any time period, it remains open until the end of the planning horizon. The problem belongs to the class
NP-hard, since it reduces to the well-known p-median problem [10] when the planning horizon shrinks to one single
period.

We show that, in the general case, the allocation subproblem that results when the set of facilities to be opened is
fixed can be solved in polynomial time, since its coefficient matrix is totally unimodular. Occasionally, the structure of
this subproblem can be further exploited. For instance, for non-negative assignment costs it reduces to a transportation
problem, and for the version of the problem when there is no minimum required number of customers to be served
per period but there is a profit associated with serviced customers, it reduces to a semi-assignment problem [11]. This
allows solving efficiently the Lagrangean problem that relaxes constraints requiring customers to be assigned to open
facilities. Based on these properties, we propose a solution approach that provides both lower and upper bounds by
combining subgradient optimization to solve the Lagrangean dual with an ad hoc heuristic that uses information from
the Lagrangean subproblem to generate feasible solutions.

Finally, we have run a series of computational experiments, in order to assess the efficiency of our algorithm. We
have seen that the problems are difficult to solve and that for medium size instances CPLEX might not be able to obtain
the optimal solution within 2 h of cputime. Moreover, in some cases CPLEX is not able to find any feasible solution
within the above mentioned cputime. On the contrary, the numerical results indicate that the proposed approach is very
effective and provides very good quality feasible solutions with small duality gaps and small computation times. For
analyzing the structure of the solutions obtained with our model we also compare the generated solutions with those
obtained by solving a series of independent decoupled problems. We also use our model within a what-if scenario
analysis for finding appropriate number of periods within the planning horizon yielding to a tradeoff between cost and
service level.

The paper is organized as follows. Section 2 describes a mixed integer mathematical programming (MIP) formulation
of MISFLP. Section 3 is devoted to the allocation subproblem that results when the set of facilities that are open in
each time period is fixed. As we shall see in the paper, this problem is instrumental in our approach to solve MISFLP.
In Section 4 we develop a Lagrangean relaxation to get lower bounds on our MIP formulation. We give several results
describing the components of the subgradients and the integrality property of our relaxation. The next section deals
with our solution approach. Our method combines dual steps in a subgradient algorithm with a heuristic for obtaining
improved feasible solutions of MISFLP. Section 6 reports on the results obtained from our computational experiments.
In this regard, we have tested several batteries of problems that show the good performance of our algorithm both in
cputime and gap. This section also includes an analysis of the solutions yielded by MISFLP as compared to the ones
obtained by solving a sequence of decoupled problems for each period, and some insight on how our model can be
used as a tool for deciding the number of periods that the planning horizon should have. The paper ends with some
conclusions on the models, solution approach and challenging open problems.

1358 M. Albareda-Sambola et al. / Computers & Operations Research 36 (2009) 1356–1375

2. A mathematical programming formulation of MISFLP

In this section we present the formal description of MISFLP and we model it by means of a mixed integer linear
program. Recall that this model looks for the locational and assignment decisions, over a given planning horizon, that
lead to the minimization of the total operation costs. The modeling hypotheses that require a minimum service level
per period are stated by means of a minimum number of customers to be served and a number of new plants to be
opened. As explained above, the nature of the problem also imposes continuity on customer service.

To simplify the mathematical formulation of our problem we use the following notation:

• I: set of customers, indexed by i ∈ I ,
• J: set of possible locations for facilities, indexed by j ∈ J ,
• T: set of time periods, indexed by t ∈ T .

For each period t ∈ T , define

• nt : minimum number of customers that must be served at period t,
• pt : number of facilities that must be opened at period t.

In addition, two types of costs are combined in this problem:

• ct
ij : assignment value of allocating customer i to facility j at time period t,

• f t
j : total cost of facility j being established at time period t.

This cost includes the opening cost at time period t and the maintenance cost from time period t to the end of the
planning horizon. Note that there is no sign constraint on any of the above costs.

We further assume that once a facility is opened, it remains open until the end of the planning horizon. Also, if a
customer is served for the first time at period t̂ , it must be served in all subsequent periods t � t̂ and all customers
have to be serviced at the end of the planning horizon. Served customers can be allocated to different open facilities
at different periods. Since allocation costs vary with the time periods, customers will patronize different servers in
different periods according to a lower cost policy. The goal is to find the facilities to open at each period t ∈ T and the
allocation of customers to the open facilities that satisfy the above requirements at the minimum total cost.

Note that MISFLP is quite general and it has as particular cases problems with apparently different characteristics.
First of all, a simple transformation of the data will allow to solve problems in which it is not necessary to serve all
demands at the end of the planning horizon. This could be done by introducing a dummy facility with:

f t
j =

{∞ t < T

0 t = T
and ct

ij =
{∞ t < T ,

� t = T ,

where � is a penalty for leaving a costumer unassigned at the end of the planning horizon. On the other hand, one
can also introduce penalties for not servicing the customers in the different periods. It is straightforward that after
some rearrangements the resulting objective function is similar to that of our model. In particular, choosing these
penalties large enough will force satisfying the demand of all customers in all periods. When the planning horizon
reduces to one single period, and the setup costs are zero, we obtain the well-known p-median problem. For a general
planning horizon, when the assignment values c are non-negative and there is a pre-specified coverage level at each
intermediate period (nt > 0), the resulting problem can be seen as a cost-minimizing problem. Note that also the profit-
maximizing version of the problem where there is no required coverage level at each intermediate period (nt = 0),
but there is a profit gt

i associated with serviced customers, fits within MISFLP. The potential applications described
in the Introduction, corresponding to private services, fall within this category. In this case, the profit for servicing a
customer can be incorporated to its assignment value by defining transformed allocation values ĉt

ij = ct
ij − gt

i . (Notice
that the transformed costs might be negative.) We remark that, for the reasons given in the Introduction, also in the
profit-maximizing model the constraints that ensure continuity in service are required. In spite of not having a minimum
coverage level per period (nt = 0, for all t), costumers will be served starting from some period when the decision is
profitable on the overall planning horizon.

M. Albareda-Sambola et al. / Computers & Operations Research 36 (2009) 1356–1375 1359

Since MISFLP includes as a particular case the p-median problem, it belongs to the class of NP-hard problems, see
Kariv and Hakimi [10].

In order to build a mathematical programming formulation for MISFLP, we define the following decision variables:

• xt
ij =

{
1 if customer i is assigned to facility j at time period t,

0 otherwise,

• yt
j =

{
1 if facility j is opened at time period t,

0 otherwise.

Using these conventions, the mathematical formulation of MISFLP is

(MISFLP) min
∑
t∈T

∑
j∈J

(∑
i∈I

ct
ij x

t
ij + f t

j yt
j

)
(1)

s.t.
∑
i∈I

∑
j∈J

xt
ij �nt ∀t ∈ T , (2)

∑
j∈J

xt
ij �1 ∀i ∈ I, ∀t ∈ T , (3)

∑
j∈J

xt
ij �

∑
j∈J

xt−1
ij ∀i ∈ I, ∀t ∈ T , t > 1, (4)

∑
j∈J

x
|T |
ij = 1 ∀i ∈ I , (5)

xt
ij �

∑
k � t

yk
j ∀i ∈ I, ∀j ∈ J, ∀t ∈ T , (6)

∑
j∈J

yt
j = pt ∀t ∈ T , (7)

∑
t∈T

yt
j �1 ∀j ∈ J , (8)

xt
ij ∈ {0, 1} ∀i ∈ I, ∀j ∈ J, ∀t ∈ T , (9)

yt
j ∈ {0, 1} ∀j ∈ J, ∀t ∈ T . (10)

The first set of constraints (2) are the covering constraints that impose that in each time period the minimum required
number of customers are being served. Constraints (3) ensure that each customer is assigned to at most one facility
in each period. Constraints (4) guarantee that once that a customer is served at a given period he/she will be served
in any subsequent period. Next set of constraints (5) ensures that all customers are served at the end of the planning
horizon. Constraints (6) represent the fact that customers are assigned only to open facilities. The following group of
constraints (7) models that exactly pt facilities are opened in each time period whereas constraints (8) impose that a
facility can be opened, at most, once. The last constraints (9) and (10) define the binary variables. The objective function
(1) minimizes the overall cost for opening the plants and allocating the customers satisfying the required hypotheses.

3. The allocation subproblem

In this section we study the structure of the allocation subproblem that results when the set of facilities that are open
in each time period is fixed. As we will see, the allocation subproblem can be solved in polynomial time, since the
coefficient matrix is totally unimodular. This property will be used later on in our solution approach for MISFLP.

Throughout this section we suppose that we know the set of facilities that are open in each time period. For each
t ∈ T let J t denote the set of open facilities in time period t and for each i ∈ I let dit be the total cost for allocating

1360 M. Albareda-Sambola et al. / Computers & Operations Research 36 (2009) 1356–1375

customer i in period t for the first time. Note that if customer i is allocated for the first time at t, in this period and in
any subsequent period he/she will be assigned to the cheapest open facility. Therefore,

dit =
|T |∑
k=t

(
min
j∈J k

ck
ij

)
∀i ∈ I, ∀t ∈ T .

Hence, we have the following result.

Proposition 1. If the set of open facilities in period t, J t , is known for t ∈ T then the optimal allocation for the
customers can be obtained by solving the following linear program whose coefficient matrix is totally unimodular:

(ASP) min
∑
t∈T

∑
i∈I

dit zit (11)

s.t.
∑
t∈T

zit = 1 ∀i ∈ I , (12)

∑
i∈I

t∑
r=1

zir �nt ∀t ∈ T , (13)

zit �0 ∀i ∈ I, ∀t ∈ T , (14)

where

zit =
{

1 if customer i is allocated in period t for the first time,
0 otherwise.

Proof. When the set of facilities to open is fixed, a model for the allocation subproblem can be directly obtained from
(1)–(10):

min
∑
t∈T

∑
j∈J t

∑
i∈I

ct
ij x

t
ij (15)

s.t.
∑
i∈I

∑
j∈J t

xt
ij �nt ∀t ∈ T , (16)

∑
j∈J t

xt
ij �1 ∀i ∈ I, ∀t ∈ T , (17)

∑
j∈J t

xt
ij �

∑
j∈J t−1

xt−1
ij ∀i ∈ I, ∀t ∈ T , t > 1, (18)

∑
j∈J |T |

x
|T |
ij = 1 ∀i ∈ I , (19)

xt
ij ∈ {0, 1} ∀i ∈ I, ∀j ∈ J t , ∀t ∈ T . (20)

However, from the above discussion it is straightforward that the allocation subproblem can also be formulated by
means of model ASP, whose coefficient matrix is given by

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 . . . 1
. . .

.
. . .

1 1 . . . 1
1 . . . 1 0 . . . 0 . . . 0 . . . 0
1 . . . 1 1 . . . 1 . . . 0 . . . 0

...
...

...

1 . . . 1 1 . . . 1 . . . 1 . . . 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

M. Albareda-Sambola et al. / Computers & Operations Research 36 (2009) 1356–1375 1361

This matrix can be transformed into a transportation matrix by subtracting consecutively rows. The operation consists
of subtracting the row |I | + k − 1 from the row |I | + k for k = |T |, . . . , 2. Since, row addition maintains the value of
determinants and transportation matrices are totally unimodular (T.U.) we get that A is T.U. as well. �

Therefore, one can see that the opening pattern given by J t for t ∈ T and the allocation scheme given by ASP generate
a feasible solution for the original problem (1)–(10). In the next sections we will exploit this result to solve efficiently
the Lagrangean dual that we will consider, and to obtain feasible solutions for our original problem.

In the particular case of ASP where for each i ∈ I the cost coefficients dit are non-increasing with respect to t,
there is an optimal solution to ASP where all the constraints (13) hold as equality. In this case, ASP admits a simpler
transformation into a transportation problem, by subtracting consecutive rows of constraints (13) as indicated in the
proof to Proposition 1. Note that when the allocation costs are non-negative the above condition holds. Thus we have
the following:

Corollary 1. If the set of open facilities in period t, J t , is known for t ∈ T and ct
ij �0 for all i, j, t then the optimal

allocation for the customers can be obtained by solving the transportation problem:

(TP) min
∑
t∈T

∑
i∈I

dit zit

s.t.
∑
t∈T

zit = 1 ∀i ∈ I ,

∑
i∈I

zit = nt − nt−1 ∀t ∈ T ,

zit �0 ∀i ∈ I, ∀t ∈ T ,

where

zit =
{

1 if customer i is allocated in period t for the first time,
0 otherwise.

Also in the case of the profit-maximizing problem, the ASP can be transformed into a much simpler problem. Set

dit =
|T |∑
k=t

(
min
j∈J k

(ck
ij − gk

i)

)
∀i ∈ I, ∀t ∈ T .

Hence, since in the profit-maximizing model nt = 0 for all t, constraints (13) are redundant because they reduce to a
summation of binary variables greater than or equal to 0. In this case the optimal allocation for the customers can be
obtained by solving the following series of independent semi-assignment problems [11]:

(KST) min
∑
i∈I

∑
t∈T

dit zit

s.t.
∑
t∈T

zit = 1, ∀ i ∈ I,

zit ∈ {0, 1}, ∀i ∈ I, t ∈ T .

⎫⎪⎪⎬
⎪⎪⎭ ⇔

⎧⎪⎪⎨
⎪⎪⎩

∑
i∈I

min
∑
t∈T

dit zit

s.t.
∑
t∈T

zit = 1,

zit ∈ {0, 1}, ∀t ∈ T .

Notice that the above problem can be solved by inspection taking zit∗i = 1 where t∗i ∈ arg mint {dit } (arbitrarily
selected) and zit = 0 for all t �= t∗i , and for all i ∈ I .

4. Lagrangean relaxation

In this section, we consider the Lagrangean relaxation of the problem obtained by relaxing the constraints (6) into
the objective function. Let ut

ij �0 denote the non-negative multipliers, then the relaxed problem, denoted by L(u)

1362 M. Albareda-Sambola et al. / Computers & Operations Research 36 (2009) 1356–1375

is given by

L(u) = min
∑
t∈T

∑
j∈J

(∑
i∈I

ct
ij x

t
ij + f t

j yt
j

)
+
∑
t∈T

∑
i∈I

∑
j∈J

ut
ij

⎛
⎝xt

ij −
∑
k � t

yk
j

⎞
⎠

s.t. (2), (3), (4), (5), (7), (8), (9), (10).

After some algebra the objective function turns out to be

min
∑
t∈T

∑
j∈J

∑
i∈I

(ct
ij + ut

ij)x
t
ij +

∑
t∈T

∑
j∈J

⎛
⎝f t

j −
∑
i∈I

∑
k � t

uk
ij

⎞
⎠ yt

j .

This function can be split into two different functions. The first one depends only on the x variables, while the second
one only on the variables y. In addition, constraints (2)–(5) and (9) only relate x variables, while y variables appear
alone in constraints (7), (8) and (10). Thus, L(u) separates into two subproblems. The first problem results in:

Lx(u) = min
∑
t∈T

∑
j∈J

∑
i∈I

(ct
ij + ut

ij)x
t
ij (21)

s.t.
∑
i∈I

∑
j∈J

xt
ij �nt ∀t ∈ T , (22)

∑
j∈J

xt
ij �1 ∀i ∈ I, ∀t ∈ T , (23)

∑
j∈J

xt
ij �

∑
j∈J

xt−1
ij ∀i ∈ I, ∀t ∈ T , t > 1, (24)

∑
j∈J

x
|T |
ij = 1 ∀i ∈ I , (25)

xt
ij ∈ {0, 1} ∀i ∈ I, ∀j ∈ J, ∀t ∈ T . (26)

This problem can be transformed into a problem of the form ASP, by just taking J t = J ∀t ∈ T and

dit =
|T |∑
k=t

(
min
j∈J

(ck
ij + uk

ij)

)
∀i ∈ I, ∀t ∈ T .

On the other hand, the second problem is

Ly(u) = min
∑
t∈T

∑
j∈J

⎛
⎝f t

j −
∑
i∈I

∑
k � t

uk
ij

⎞
⎠ yt

j (27)

s.t.
∑
j∈J

yt
j = pt ∀t ∈ T , (28)

∑
t∈T

yt
j �1 ∀j ∈ J , (29)

yt
j ∈ {0, 1} ∀j ∈ J, ∀t ∈ T , (30)

which can be solved as a transportation problem. The following remarks apply to L(u).

Remark 1. L(u) = Lx(u) + Ly(u).

M. Albareda-Sambola et al. / Computers & Operations Research 36 (2009) 1356–1375 1363

Remark 2. For any given u�0, let x̃ and ỹ be the optimal solutions of Lx(u) and Ly(u), respectively. Then, a
subgradient of L(u) is given by

�t
ij (u) = x̃t

ij −
∑
k � t

ỹk
j =

{−1 if customer i is not assigned to facility j that is open at t,

1 if customer i is assigned to facility j that is not open at t,

0 otherwise.

Thus, we can solve the Lagrangean dual zLD = maxu�0 L(u) with subgradient optimization.

Remark 3. L(u) has the integrality property, since all the extreme points both in Lx(u) and Ly(u) are integral. Thus,
zLD = zLP, where zLP denotes the optimal value to the LP relaxation of (1)–(10).

Remark 3 might make us question whether it is computationally worthwhile to solve the Lagrangean dual, instead of
the LP relaxation of (1)–(10). As we will see in the computational results section, as the size of the problems increases,
the computation times required to solve the Lagrangean dual tend to be considerably smaller than the ones needed
to solve the LP relaxation. This gives us a first justification for the selected approach. In addition, our Lagrangean
approach provides us information to generate upper bounds for program (1)–(10).

4.1. Upper bounds

Assume that, for a given u, the Lagrangean problem L(u) is solved. Then, a feasible solution for program (1)–(10)
can be obtained by solving the allocation subproblem ASP(ỹ) associated with the set J t (ỹ) of open facilities at each
period given by the optimal solutions ỹ to Ly(u), that is

J t (ỹ) =
⎧⎨
⎩j ∈ J :

∑
k � t

ỹk
j = 1

⎫⎬
⎭ . (31)

Hence, an upper bound to (1)–(10) can be obtained as

val(ASP(ỹ)) +
∑
t∈T

∑
j∈J

f t
j ỹt

j ,

where val(P) stands for the optimal value of problem P.
In addition, at some steps throughout the algorithm we will use an alternative faster and easier heuristic, aiming

to improve the incumbent upper bound. It gives an allocation of customers according to the facilities opened by ỹ.
Formally, it performs the following:

In each period t ∈ T , if x̃t
ij = 1 and j /∈ J t (ỹ), then reassign customer i to facility j ∈ J t (ỹ) with the minimum cost.

That is:

j ∈ arg min {ct
il : l ∈ J t (ỹ)}.

We will refer to this heuristic procedure, by HEUT (ỹ). Then, an upper bound to (1)–(10) can be obtained as

val(HEUT(ỹ)) +
∑
t∈T

∑
j∈J

f t
j ỹt

j .

5. Algorithm

The method that we propose combines the solution of the Lagrangean dual LD with a process for finding feasible
solutions to MISFLP. The lower bound zLD of the previous section will be used to compute the gap of our approach.
Furthermore, as we have already mentioned, the optimal y-variables of Ly(u) can be used to derive a feasible solution
to our original problem by solving the corresponding ASP problem.

Our algorithm consists of an Initialization step, where the initial upper and lower bounds, as well as the initial dual
multipliers are set; and a single loop. This loop iterates until the stopping criterion is fulfilled. In each iteration we

1364 M. Albareda-Sambola et al. / Computers & Operations Research 36 (2009) 1356–1375

perform dual steps of the subgradient algorithm trying to improve the lower bound, and we generate new feasible
solutions of MISFLP based on the optimal solutions of Ly(u), which are used to reduce the upper bound. Next we
outline the procedure for solving our problem.

Algorithm 1
Initialization.

Set initial step length parameter � = 2.
Set initial multipliers ut

ij ∀ i ∈ I, j ∈ J and t ∈ T .

Solve L(u) and let (x̃, ỹ) be an optimal solution. Set the initial lower and upper bounds, respectively, to
ZLB := L(u) and ZUB := val(ASP(ỹ)) + ∑

t∈T

∑
j∈J

f t
j ỹt

j .

While NOT (STOPPING CRITERION)
Determine the subgradient �(u).

Compute the step length � = �·(ZUB−ZLB)

〈�(u),�(u)〉 .

If (� < �) then set � to the initial step parameter and recompute �.
Set ut

ij := max{ut
ij + � · �t

ij (u), 0} ∀ i ∈ I, j ∈ J and t ∈ T .
Solve L(u) and let (x̃, ỹ) be an optimal solution.
If (ZLB < L(u)) set ZLB : =L(u).
Apply (HEUT (ỹ)).
If (ZUB > val(HEUT(ỹ)) + ∑

t∈T

∑
j∈J

f t
j ỹt

j) set ZUB := val(HEUT(ỹ)) + ∑
t∈T

∑
j∈J

f t
j ỹt

j .

If (MAXIMUM NUMBER OF SUBGRADIENT ITERATIONS WITHOUT IMPROVEMENT) then
Reduce the step length parameter � := �/2.
Solve ASP with set J t defined by the current ỹ variables and update ZUB accordingly.

End While

The initial choice of the multipliers depends on the problem type. We describe them in detail in Section 6, devoted
to computational results.

In the above general description, there are some parameters that need to be specified. The precision parameter �
was taken equal to 10−3, and the maximum number of subgradient iterations without improvement has been set to
|I |/5+|J |. In our implementation we have used several conditions as stopping criteria. The first one is the coincidence
of the current upper and lower bounds, i.e. ZLB = ZUB. The second one is the optimality condition �(u)�0 and
< �(u), u > = 0. The third one checks for the convergence of the subgradient algorithm. Formally, let um be the dual
multiplier in iteration m. According to the third criterion, the algorithm stops if there exists m such that |L(um+k) −
L(um+k+1)| < 10−3, for k =1, . . . , 5. Finally, for avoiding unnecessary iterations, the algorithm also terminates when,
after total number of at least 5000 iterations, the maximum number of iterations without improvement is reached. These
values were set after some computational experiences, since they gave us the best trade-off between solution quality and
computation time.

6. Computational study

The computational tests presented in this section have been designed in order to evaluate the structure of the
solutions as well as the performance of the solution procedure developed in Section 5. On this account the algorithm
was implemented using Visual C + +6.0, where ILOG CPLEX Collable Library routines have been used for the
implementation of the linear programs. Furthermore, ILOG CPLEX 8.1 has been used in order to solve these linear
programs and to obtain exact solutions of the tested instances. Default parameters have been used. All computational
tests have been performed on a PC with a Pentium IV processor with 2.0 GHz and 512 MB of RAM.

The experiments are separated into three parts. The first part has been divided into three separate blocks. Each of them
is dedicated to MISFLP instances with different characteristics: (a) general planning horizon, with one new facility
opened per period (pt = 1, ∀t); (b) general planning horizon, with an arbitrary number of facilities opened per period
(pt �1, ∀t); and (c) p-median instances. With blocks (a) and (b), we want to analyze the performance of the proposed
solution method with respect to both the quality of the obtained solutions and the efficiency of the method. To the

M. Albareda-Sambola et al. / Computers & Operations Research 36 (2009) 1356–1375 1365

best of our knowledge there are no available instances for these blocks. Thus, we have generated them as described
later in this section. The experiments in block (c) have a different orientation. We note that our algorithm does not
exploit specifically the structure of the p-median problem, and we want to evaluate the performance of our algorithm for
well-known instances of this structured problem. For these experiments we have used the 40 uncapacitated p-median
instances in the OR-Library [12].

The initial multipliers used for the experiments were taken in the following way. In those instances corresponding
to blocks (a) and (b), for all i and t, we compute the average assignment value of allocating customer i at period t,
i.e., let mt

i =∑
j∈J ct

ij /|J |. Then, we set the initial multipliers as the non-negative deviation of ct
ij with respect to that

value:

ut
ij = max{mt

i − ct
ij , 0} ∀ i ∈ I, j ∈ J and t ∈ T .

In block (c) multipliers are set initially to zero, to avoid negative figures since no setup costs are present.
The second part of the experiments analyzes the structure of the solutions generated with our model, and compares

it with that of the solutions obtained by solving a series of independent decoupled problems. Finally, in the third part,
we use our model within a what-if scenario analysis for finding appropriate number of periods within the planning
horizon yielding to a tradeoff between cost and service level.

6.1. General planning horizon, with one facility open per period

For generating these instances, we identify three relevant factors in the design of our experiment, namely the total
number of customers, the number of candidate sites to open facilities and the planning horizon. For each of these factors
we consider different levels that define our battery of test problems: |I | varies in {50, 100, 150, 200, 500}, |J | varies
in {8, 10, 12, 15, 20, 30} and |T | in {4, 5, 6, 7, 8, 10, 12} (|J |� |T |). For each combination of factors and levels we
generate 10 instances. In total we have generated 1950 instances using the following structure:

• Setup costs drawn from a uniform distribution in [3000, 5000].
• Maintenance costs drawn from a uniform distribution in [50|I |/|T |, 100|I |/|T |].
• Assignment costs drawn from a uniform distribution in [10, 100].
• The values of nt follow a uniform distribution in [nt−1, |I |], for t = 1, . . . , |T | − 1, (n0 = 1), whereas

n|T | = |I |.

Tables 1–3 depict information on these instances and on the average results obtained in each of their meaningful
aspects. In particular, Table 1 summarizes the results of the algorithm of Section 5 for solving the Lagrangean dual.
The rows of Table 1 are grouped into blocks, each of them corresponding to a fixed number of periods |T |. The rows
within each block correspond to instances with a fixed number of customers |I |. The columns of Table 1 are separated
into two blocks. The first block depicts the percent gaps (average and maximum) between the obtained upper and lower
bounds (100(ZUB − ZLB)/zLB), whereas the second block gives the required cputimes in seconds. Within each block,
each column corresponds to instances with a fixed number of facilities |J |. Thus, each entry in the tables corresponds
to instances of a fixed dimension, and gives the average value over the 10 instances of this size. For the gaps also the
maximum value over the 10 instances is reported.

As can be seen, the numerical results are very good, both in terms of the obtained gaps and of the required computation
times. It is worth noting that the obtained percent gaps are very small and never exceed 2.75% for the average gap
while the maximum among all the instances is 3.71%. This indicates that the duality gap of the considered instances is
very small, but also that our solution method is able to find feasible solutions which can be proven to be within a very
small gap from optimum. To a large extent these somewhat surprising results motivated our computational experiments
with the well-known p-median instances. As will be seen later in this section the computational results with p-median
instances are qualitatively similar to the ones given in Table 1. The figures in the second block of columns of Table 1
indicate the computational burden required to obtain these upper and lower bounds is small, taking into account the
size of the instances. The largest cputime of 448.71 s corresponds to the largest instances with |J | = 30, |I | = 500 and
|T | = 12. Note that these instances have more than 180 000 binary variables. (Fig. 1 illustrates the behavior of cputime
of our algorithm as a function of |I | for |J | = 30.)

1366 M. Albareda-Sambola et al. / Computers & Operations Research 36 (2009) 1356–1375

Table 1
Percent gaps and cputimes for Algorithm 1.

Percent gap cputime

|J | |J |
8 10 12 15 20 30 8 10 12 15 20 30

|T | |I | av. max av. max av. max av. max av. max av. max

4 50 0.09 0.49 0.14 0.58 0.24 0.70 0.43 0.90 0.30 0.90 0.45 0.90 2.69 3.12 5.32 5.71 6.18 9.03
100 0.35 0.92 0.31 1.12 0.17 0.94 0.65 1.46 0.67 1.21 0.73 1.62 7.87 9.76 8.52 11.81 12.89 19.47
150 0.20 0.75 0.35 1.03 0.45 1.05 0.50 0.97 1.10 1.88 1.10 2.20 13.69 15.92 16.86 23.73 21.81 28.03
200 0.41 1.79 0.75 1.55 0.59 1.41 0.78 1.59 1.03 1.77 1.24 2.43 18.21 22.38 22.52 25.88 29.23 36.21
500 0.27 1.23 0.63 1.41 0.98 1.91 1.04 2.33 1.09 2.55 1.16 2.54 55.78 68.41 65.55 87.46 87.41 118.39

5 50 0.06 0.15 0.24 0.97 0.27 0.65 0.46 1.07 0.39 0.84 0.71 1.16 4.81 5.66 6.03 6.59 9.51 12.41
100 0.28 1.18 0.28 0.69 0.59 1.61 0.55 1.29 0.77 1.39 0.96 1.68 11.67 11.91 13.13 16.52 19.71 25.28
150 0.50 1.22 0.69 1.55 0.60 1.39 0.77 2.01 1.19 2.17 1.34 1.92 22.37 20.99 19.68 24.51 28.92 37.87
200 0.45 0.86 0.54 1.70 0.73 1.42 0.93 1.59 1.06 1.75 1.62 2.36 25.15 19.96 30.21 32.92 38.73 49.15
500 0.59 1.17 0.89 1.42 1.00 1.89 1.42 2.11 1.72 2.46 1.92 3.02 75.71 90.53 95.50 106.55 105.93 135.92

6 50 0.34 0.83 0.19 0.67 0.41 0.82 0.33 0.88 0.67 1.12 0.82 1.38 7.45 7.89 7.99 9.78 12.47 17.56
100 0.40 0.87 0.44 1.29 0.70 1.19 0.63 0.99 0.90 1.33 1.30 1.95 14.21 15.62 18.13 19.70 24.35 34.14
150 0.56 1.21 0.80 1.22 0.80 1.38 1.02 1.97 0.86 1.77 1.61 2.42 26.03 24.89 29.23 33.92 38.78 48.56
200 0.45 1.43 0.63 1.13 0.84 1.52 1.08 2.39 1.30 1.74 1.93 2.86 36.43 37.14 37.45 42.23 49.52 65.28
500 0.37 1.21 1.10 2.36 1.31 2.30 1.19 2.34 1.85 2.66 1.94 2.69 104.52 99.61 107.59 115.12 131.79 166.66

7 50 0.23 0.49 0.24 0.53 0.37 0.81 0.43 0.91 0.87 1.32 0.83 1.55 9.21 8.82 10.78 12.45 14.32 18.91
100 0.28 0.81 0.66 1.06 0.70 1.22 0.79 1.06 1.18 1.89 1.57 1.93 19.67 19.37 22.50 23.61 29.33 35.89
150 0.39 0.97 0.57 1.03 0.89 1.75 1.00 1.58 0.99 1.82 1.71 2.67 25.19 29.33 35.30 36.49 45.32 52.59
200 0.40 0.72 0.62 1.29 0.80 1.34 1.12 1.81 1.56 2.70 1.82 2.26 44.40 38.07 44.11 49.34 56.89 72.79
500 0.53 1.36 1.11 1.65 0.97 2.04 1.85 2.66 2.01 3.02 2.25 3.29 225.91 115.45 132.56 136.92 174.59 195.24

8 50 0.14 0.59 0.33 0.64 0.46 0.98 0.48 0.99 0.66 1.02 0.77 1.24 9.89 9.62 12.41 13.77 16.89 21.74
100 0.37 0.69 0.58 1.17 0.59 1.07 0.78 1.22 1.15 1.67 1.31 1.95 21.23 21.69 25.04 26.91 32.93 41.88
150 0.31 0.54 0.74 1.19 0.83 1.68 1.26 2.00 1.42 2.35 2.11 2.48 32.50 37.11 38.96 46.63 54.82 67.58
200 0.52 1.08 0.88 1.41 0.97 1.77 1.15 1.63 1.52 2.15 2.05 3.05 42.44 52.37 71.43 57.11 72.06 81.05
500 0.55 1.18 0.96 1.84 1.60 2.47 1.43 1.90 1.95 2.98 2.75 3.50 154.45 140.67 159.11 168.04 176.02 232.67

10 50 0.17 0.38 0.38 0.72 0.48 0.92 0.81 1.31 0.95 1.66 18.52 16.84 21.93 21.89 29.24
100 0.48 0.69 0.61 1.03 1.00 1.53 1.21 1.73 1.65 2.19 30.12 34.31 38.09 42.58 55.29
150 0.54 1.02 0.87 1.36 1.02 1.38 1.58 2.17 1.78 2.49 49.03 49.52 56.71 64.09 81.59
200 0.70 1.34 0.93 1.52 1.18 1.78 1.70 2.29 2.26 3.02 58.42 77.78 79.36 88.56 107.01
500 1.18 1.52 1.21 1.58 1.58 2.16 2.06 2.59 2.68 3.21 196.91 230.13 251.79 311.09 347.41

12 50 0.18 0.37 0.40 0.70 0.75 1.01 0.97 1.43 24.92 21.56 28.68 36.52
100 0.65 1.07 0.87 1.20 1.07 1.37 1.77 2.23 41.69 47.50 54.71 60.08
150 0.90 1.32 1.17 1.71 1.42 1.89 1.80 2.25 59.72 70.29 80.79 107.17
200 1.06 1.56 1.23 1.69 1.67 2.21 2.06 2.92 85.42 96.55 110.35 142.61
500 1.37 1.80 1.68 2.17 1.72 2.81 2.64 3.71 242.69 318.56 379.44 448.71

For a better evaluation of our results we have used CPLEX to run some additional experiments. The information we
wanted to obtain with these experiments are: (1) the values of the optimal solutions to the instances; (2) the cputime
required to solve the LP relaxation of model (1)–(10); and (3) the cputime required by CPLEX to obtain the optimal
solution. For these experiments a maximum cputime of 7200 s was fixed.

Tables 2 and 3 summarize the results obtained with these experiments for |T | = 4 and |T | = 8. In particular, Table 2
gives: (1) the percent gaps between the upper bounds obtained when solving the Lagrangean dual and the optimal/best
solution found with CPLEX (entries labeled gs); (2) the number of instances out of the 10 instances of the same
dimension for which the best solution found with our algorithm was at least as good as the best solution found with
CPLEX (entries labeled nb); and (3) the number of instances out of the 10 instances of the same dimension for which

M. Albareda-Sambola et al. / Computers & Operations Research 36 (2009) 1356–1375 1367

Table 2
Percent gaps of upper bounds with respect to the best solution found with CPLEX.

|I | = 50 |I | = 100 |I | = 150 |I | = 200 |I | = 500

|T | |J | gs nb tmax gs nb tmax gs nb tmax gs nb tmax gs nb tmax

4 8 0.00 10 0 0.00 10 0 0.00 9 0 0.00 10 1 0.00 10 0
10 0.00 10 0 0.00 10 0 0.00 10 0 0.02 9 1 0.00 10 4
12 0.01 9 0 0.00 10 0 0.00 10 0 0.00 9 0 −0.01 9 5
15 0.00 9 0 0.01 9 0 0.00 10 0 0.01 9 1 −0.02 10 6
20 0.00 10 0 0.00 10 0 0.01 9 1 0.00 10 3 −0.01 9 6
30 0.00 10 0 0.00 9 0 0.03 9 1 −0.06 9 6 0.02 9 5

8 8 0.00 10 0 0.00 10 0 0.00 10 0 0.02 8 0 0.00 9 5
10 0.00 9 0 0.00 9 1 0.01 9 2 0.02 6 6 0.00 6 7
12 0.03 8 0 0.00 10 0 0.04 6 6 −0.04 9 5 −0.14 6 10
15 0.00 10 0 0.01 9 3 −0.05 10 8 0.00 8 7 −0.29 10 10
20 0.00 8 0 0.00 7 7 −0.15 7 9 0.00 7 10 * 10 10
30 0.03 7 1 −0.13 7 8 −0.00 6 10 * 10 10 * 10 10

Table 3
Comparison of cputimes between Algorithm 1, the LP solution, and the best solution found with CPLEX.

|T | = 4 |T | = 8

|J | |I | = 50 |I | = 100 |I | = 150 |I | = 200 |I | = 500 |I | = 50 |I | = 100 |I | = 150 |I | = 200 |I | = 500

8 Rlag 2.69 7.87 13.69 18.21 55.78 9.89 21.23 32.50 42.44 154.45
Rlin 0.34 0.51 1.19 3.06 21.76 0.85 2.55 6.29 10.71 105.57
best 0.62 9.10 30.68 959.10 46.28 5.40 24.80 97.40 973.50 4664.60

10 Rlag 3.12 9.76 15.92 22.38 68.41 9.62 21.69 37.11 52.37 140.67
Rlin 0.00 0.34 2.04 4.59 34.68 0.51 3.40 11.56 21.42 194.48
best 1.40 9.41 17.32 840.33 3234.00 24.80 851.00 2460.00 5488.00 5760.10

12 Rlag 5.32 8.52 16.86 22.52 65.55 12.41 25.04 38.96 71.43 159.11
Rlin 0.51 1.36 2.55 5.10 45.39 1.19 5.61 13.77 31.96 280.84
best 2.34 4.84 25.79 135.67 3723.78 72.80 910.00 4400.50 4037.00 7215.10

15 Rlag 5.71 11.81 23.73 25.88 87.46 13.77 26.91 46.63 57.11 168.04
Rlin 0.51 1.87 4.93 7.99 71.06 1.53 8.84 27.71 43.52 371.62
best 11.28 53.40 447.04 962.94 4446.65 378.20 2772.10 6945.60 5347.90 7202.70

20 Rlag 6.18 12.89 21.81 29.23 87.41 16.89 32.93 54.82 72.06 176.02
Rlin 0.68 3.06 9.35 13.60 111.69 2.55 18.36 41.82 84.15 772.82
best 9.15 54.29 1350.60 2250.40 4599.05 746.70 5585.40 6754.78 7201.20 7205.00

30 Rlag 9.03 19.47 28.03 36.21 118.39 21.74 41.88 67.58 81.05 232.67
Rlin 1.53 6.80 15.13 27.54 177.48 5.44 35.36 106.59 214.54 1488.10
best 19.19 209.87 1088.89 4501.56 4253.49 1731.16 5861.34 7201.40 7201.90 7208.80

CPLEX could not prove optimality of the best solution found after the limit of 7200 s of cputime (entries labeled tmax).
The values labeled gs correspond to the average over the number of instances of a given dimension for which at least
one feasible solution was found by CPLEX. Entries with an asterisk mean that CPLEX could not find any feasible
solution for any of the 10 instances of the corresponding dimension within the allowed cputime. These experiments
have shown the difficulty of the considered problem, since CPLEX fails to prove the optimality of the best solution
found in the 2 h of cputime in most of the medium size instances (|T |�8 and |I |�150). Moreover, already for |T |=8,
CPLEX fails to find one single feasible solution for the instances with |J | = 20, |I | = 500 within the allowed 7200 s
of cputime.

1368 M. Albareda-Sambola et al. / Computers & Operations Research 36 (2009) 1356–1375

0

50

100

150

200

250

300

350

400

450

500

se
co

nd
s

4 periods 5 periods
6 periods 7 periods
8 periods 10 periods
12 periods

50 100 150 200 500
|I|

Fig. 1. Averaged CPU time of Algorithm 1 varying |I | for |J | = 30.

The results of Table 2 show that in most cases (539 out of 600 instances) the feasible solutions obtained with our
algorithm are as good as the optimal/best solution found with CPLEX. The largest average percent gap between the
best solution found with our algorithm and the optimal/best solution found with CPLEX is 0.03 which, in our opinion,
is extremely good. Moreover, it can be seen that for the larger instances our feasible solutions are on the average better
than the best solutions found with CPLEX in 7200 s of cputime (entries labeled gs with a negative value).

Table 3 allows to compare the computational cost of our algorithm (entries labeled Rlag) with the cost required by
CPLEX to obtain the lower bound by solving the LP relaxation of model (1)–(10) (entries labeled Rlin), and with the cost
required by CPLEX to obtain the optimal/best solution found (entries labeled best). As was expected, for small instances
CPLEX obtains the lower bound in smaller computation times. But as the sizes of the instances increase obtaining
the lower bounds with our solution method becomes considerably more efficient than solving the LP relaxation with
CPLEX, even if our method also computes an upper bound. The figures inn Table 3 (together with the entries labeled
tmax in Table 2) also indicate that, broadly speaking, only instances with |T | = 4 could be solved optimally within the
upper cputime limit. However, the computational burden of our algorithm is, excepting for the small size instances, one
order of magnitude smaller than the one required by CPLEX to obtain the optimal/best solution found. Despite this,
our solutions are comparable in quality and even become better than the ones of CPLEX as the sizes of the instances
increase. This indicates that, even if the duality gap for these instances is very small, solving them exactly is extremely
time consuming. This highlights the interest of our algorithm, since, as we have seen, we obtain feasible solutions that
are either optimal or very close to optimality in small computation times.

6.2. General planning horizon, with an arbitrary number of facilities to open per period

These experiments were run in order to see if we could appreciate any difference on the performance of our solution
method when the number of facilities to open at each period was not necessarily 1. For allowing more combinatorics
in the possibilities for the sets of facilities to open at each period, in these experiments we have only considered the
instances with |J | = 30 whereas, as before, values of |I | vary in {50, 100, 150, 200, 500}, and values of |T | vary in
{4, 5, 6, 7, 8, 10, 12}. In fact, for these experiments we have used the corresponding instances of Section 6.1, but for
each instance, the value pt , t ∈ T was generated as follows:

• We first obtain a number p from a discrete uniform distribution in [|T |, |J |]. This number is an approximation of the
total number of facilities to be open

∑
t∈T pt , and p/|T | is the average number of facilities to open per period.

• For t = 1, . . . , |T |, generate pt from a discrete uniform distribution in [a, b] with a = 1 and b =
2p/|T | − a�.
• If

∑
t∈T pt � |J |, we reject the instance and restart the process again.

M. Albareda-Sambola et al. / Computers & Operations Research 36 (2009) 1356–1375 1369

Table 4
Gaps (left) and CPU times (right) for Algorithm 1 with general pt for |J | = 30.

Percent gap cputime

|T | |I | = 50 |I | = 100 |I | = 150 |I | = 200 |I | = 500 |I | = 50 |I | = 100 |I | = 150 |I | = 200 |I | = 500

4 0.02 0.11 0.16 0.14 0.20 2.80 14.50 31.80 22.70 119.40
5 0.12 0.08 0.37 0.28 0.37 7.80 13.40 36.10 132.00 210.40
6 0.09 0.09 0.08 0.32 0.49 12.30 21.00 129.30 80.10 217.10
7 0.09 0.28 0.44 0.18 0.54 15.50 42.50 58.50 87.80 728.10
8 0.19 0.21 0.21 0.63 0.76 20.70 47.80 74.40 94.20 351.50
10 0.40 0.13 0.22 0.64 0.81 34.60 64.20 95.40 139.50 426.90
12 0.38 0.65 0.43 0.58 1.27 47.20 86.30 134.70 198.90 543.00

0

100

200

300

400

500

600

700 4 periods 5 periods
6 periods 7 periods
8 periods 10 periods
12 periods

se
co

nd
s

50 100 150 200 500
|I|

Fig. 2. Averaged CPU time of Algorithm 1 for the instances with |J | = 30 and pt > 1.

The results are presented in Table 4. Columns have been separated in two blocks: the first one corresponds to the
percent gaps between our upper and lower bounds, and the columns of the second block to the consumed cputime.
Once more the values correspond to the average over the 10 instances of a given dimension. As can be seen the results
are also very good. In fact, the average percent gaps never exceed 1.27% and are even smaller than the ones that we
obtained in Section 6.1 for similar size instances. This is due to the fact that, since several facilities are opened per
period, the objective function values are bigger in magnitude than in the case where only one facility is opened per
period. Thus, even if the absolute gaps between the upper and lower bounds are similar to those of Section 6.1, they
result in smaller relative gaps. As for the cputimes, we can see that they are still small for instances of the considered
sizes, although they have increased slightly with respect to the ones of the previous subsection. Note that when pt = 1,
the Lagrangean subproblem Ly(u) reduces to an assignment problem, whereas for general values of pt , Ly(u) is a
transportation problem. Even if both are structured problems that can be solved efficiently, the later takes in general
more computational effort than the former.

In addition, Fig. 2 shows, for instances with |J | = 30, the evolution of the cputime when the number of customers
varies, for each possible number of periods. The reader may notice the different behavior of Algorithm 1 for pt = 1
(Fig. 1) and pt > 1 (Fig. 2). In the former case, cputime increases linearly with |I | whereas in the latter the behavior is
not that clear due to increasing combinatorics induced by the larger number of facilities to open per period.

6.3. The p-median problem

We conclude the first part of this section by reporting the numerical results of the computational experiments that we
have run with the well-known p-median problem which, as we have already mentioned, is a particular case of MISFLP.

1370 M. Albareda-Sambola et al. / Computers & Operations Research 36 (2009) 1356–1375

Table 5
Results of Algorithm 1 on the p-median instances of the OR-Library.

ZLB opt ZUB gapL gapU gap

pmed1 5798.12 5819 5819 0.36 0.00 0.36
pmed2 4067.68 4093 4093 0.62 0.00 0.62
pmed3 4234.25 4250 4254 0.37 0.09 0.47
pmed4 3033.02 3034 3034 0.03 0.00 0.03
pmed5 1352.21 1355 1355 0.21 0.00 0.21
pmed6 7754.25 7824 7842 0.89 0.23 1.13
pmed7 5619.79 5631 5650 0.20 0.34 0.54
pmed8 4438.73 4445 4445 0.14 0.00 0.14
pmed9 2727.97 2734 2734 0.22 0.00 0.22
pmed10 1252.44 1255 1258 0.20 0.24 0.44
pmed11 7675.05 7696 7709 0.27 0.17 0.44
pmed12 6623.39 6634 6634 0.16 0.00 0.16
pmed13 4368.33 4374 4374 0.13 0.00 0.13
pmed14 2962.30 2968 2971 0.19 0.10 0.29
pmed15 1727.01 1729 1738 0.12 0.52 0.64
pmed16 8062.28 8162 8177 1.22 0.18 1.42
pmed17 6955.82 6999 7095 0.62 1.37 2.00
pmed18 4806.41 4809 4811 0.05 0.04 0.10
pmed19 2843.00 2845 2850 0.07 0.18 0.25
pmed20 1786.41 1789 1796 0.14 0.39 0.54
pmed21 9120.11 9138 9138 0.20 0.00 0.20
pmed22 8523.10 8579 8656 0.65 0.90 1.56
pmed23 4618.46 4619 4625 0.01 0.13 0.14
pmed24 2955.48 2961 2971 0.19 0.34 0.53
pmed25 1826.98 1828 1837 0.06 0.49 0.55
pmed26 9823.48 9917 9933 0.94 0.16 1.11
pmed27 8292.10 8307 8321 0.18 0.17 0.35
pmed28 4497.49 4498 4507 0.01 0.20 0.21
pmed29 3029.60 3033 3054 0.11 0.69 0.81
pmed30 1985.00 1989 1997 0.20 0.40 0.60
pmed31 9998.40 10 086 10 097 0.87 0.11 0.99
pmed32 9277.12 9297 9376 0.21 0.85 1.07
pmed33 4695.97 4700 4707 0.09 0.15 0.23
pmed34 3012.46 3013 3022 0.02 0.30 0.32
pmed35 10 261.47 10 400 10 414 1.33 0.13 1.49
pmed36 9806.53 9934 9979 1.28 0.45 1.76
pmed37 5054.56 5057 5071 0.05 0.28 0.33
pmed38 10 893.28 11 060 11 087 1.51 0.24 1.78
pmed39 9350.71 9423 9455 0.77 0.34 1.12
pmed40 5126.37 5128 5138 0.03 0.20 0.23

Given that our solution algorithm does not exploit explicitly the structure of p-median problems, the aim with these
experiments is to analyze the ability of our algorithm to obtain good quality solutions and good lower bounds for these
problems. The test instances that we have used are the ones of the OR-Library [12]. It is a battery of 40 instances with
I = J and |I | ranging in {100, 200, 300, 400, 500, 600, 700, 800, 900} and |T | = 1. These instances are available at
http://people.brunel.ac.uk/∼mastjjb/jeb/info.html.

The results are presented in Table 5. The first column gives the names of the instances. Then, in the next three
columns, our lower and upper bounds (zLB and ZUB, respectively) are compared with the optimal solution value
(opt), which is known for all these instances. The following three columns give the percent gap between our lower
bound and the optimal solution (gapL = 100 × (opt − ZLB)/opt); the percent gap between our upper bound and
the optimal solution (gapU = 100 × (ZU − opt)/opt); and the percent gap between our lower and upper bounds
gap = 100 × (ZUB − ZLB)/zLB. In fact, column gapL gives the duality gap between the optimal value and the LP
value for these instances. Note that the values in column gapL are very small and similar to the ones of the instances

http://people.brunel.ac.uk/~mastjjb/jeb/info.html

M. Albareda-Sambola et al. / Computers & Operations Research 36 (2009) 1356–1375 1371

that we generated. Note also that, in general, the values in gapU are very small. Nine instances were optimally solved;
the average percent deviation between our best solution and the optimal value is 0.26%, and only for one instance this
deviation is above 1%. We believe that these results are also very good for instances of this sizes with an algorithm that
is not designed to exploit the specific characteristics of the p-median problem.

6.4. Comparison with a decoupled model

For capturing better the performance of our model we next compare the solutions that we have obtained with the
ones generated with a decoupled model, where instead of solving one single problem for deciding over all the planning
horizon, independent problems are solved at each period for deciding the plants and the assignments for the specific
period. For the decoupled model, we also establish at each period the number of new plants to be opened (pt), and the
minimum number of customers to be serviced (nt).

For a fair comparison between the two models, in the decoupled model, we use part of the output of a given period,
as part of the input for the following period. In particular, the set of plants that are opened for the decoupled subproblem
at period t are fixed to be opened at the subproblem at period t + 1. In addition, for the reasons explained in page 2
once a customer is serviced at a period, it must also be serviced at all subsequent periods. Thus, for each customer i
that is serviced at period t, in the subproblem for period t + 1 we add the constraint,

∑
j∈J xt+1

ij = 1, to ensure that
customer i is also serviced at period t + 1.

For this experiment we have solved the decoupled model for the instances of Section 6.2 for which CPLEX found
the optimal solution of MISFLP within the time limit. The results indicate that the decoupled model behaves like a
myopic greedy heuristic, for our integrated model. That is, since the decisions made in the first periods “ignore” the
costs they will imply in later periods, the decoupled model tends to provide with very good solutions (small values)
in the first periods, which force solutions that are not so good in the later periods. Since the optimal solution to the
decoupled model is feasible for MISFLP, in all the cases the optimal value to the former model is higher than that
of the integrated model. The percent deviation of the optimal decoupled value relative to the optimal integrated value
lies in the interval [1.5, 4] (for the instances that we have solved), and the trend is that this percent gap increases
with the size of the instances. We have also observed that at the earlier periods the percent deviation with respect to
the optimal solution of the integrated model is negative, but it ends up by being positive at the end of the planning
horizon.

We have observed that the relationship between these values is quite similar for all the instances, so we have arbitrarily
chosen a representative instance with |I | = 100, |J | = 30 and |T | = 12 for illustration. For the integrated model, for
each period we have isolated the contribution to the objective function of the variables corresponding to that period,
ot , and we have calculated the accumulated value of the optimal solution so far: act

int = ∑
r � t

or . Indeed opt = ac
|T |
int .

For the decoupled model, the accumulated value for each period is just the sum of the optimal values until that period,
act

dec = ∑
r � t dr , where dr denotes the optimal value to the decoupled model in period r. Then, for each period

t the accumulated value to the decoupled model, act
dec, is compared to act

int. Fig. 3 depicts the percent deviation
100 × (act

dec − act
int)/act

int at each time epoch.
We next compare the solutions obtained with the integrated and the decoupled models. Indeed the solutions obtained

with both models must have some similarities since both require that at each period the same number of plants is
opened, and the same number of customers is serviced. However, for instances with six or more periods, the number
of new plants that are opened in the same period in the two models over the planning horizon is typically smaller than
50%. In addition, we can observe a percentage of about 15% of the plants that are opened at the end of the planning
horizon, that were opened for the first time in different periods. For example, in the instance selected for reference,
only 9 out of the 21 plants opened throughout the planning horizon were opened in the same period with the two
models.

Since in both models the set of plants that are opened at each period determines the set of customers who are
assigned, to a large extent the coincidence in the assignment of the customers depends on the coincidence on the
plants that are opened. Once more, our test instances behave quite similarly with respect to this point. Fig. 4 fur-
ther illustrates the coincidence in the assignment of customers who the selected reference instance. For each pe-
riod, customers have been classified in to four groups. Group A contains all the customers who are assigned to the
same plant in both models. Groups B and C contain customers who are not treated similarly by the two models.

1372 M. Albareda-Sambola et al. / Computers & Operations Research 36 (2009) 1356–1375

Percent deviation of decoupled wrt integrated

-1.5

-0.5

0.5

1.5

2.5

1 2 3 4 5 6 7 8 9 10 11 12
period

%
 d

ev

Fig. 3. Deviation of decoupled optimal value from integrated optimal value.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9 10 11 12
period

%
 c

us
to

m
er

s

A: assigned to same plant B: assigned to different plants

D: not assignedC: assigned/not assigned

Fig. 4. Comparing assignments of customers between MISFLP and decoupled model.

In particular, group B contains the customers who are serviced with the two models, but the plant they are assigned
to is not the same, whereas group C contains the customers who are serviced in one model and not serviced with
the other one. Finally, group D has all the customers who are not serviced in any of the two models. As can be
seen, the range of customers who are assigned to the same plant in both models ranges from 0% to 78%. The ten-
dency is to have fewer coincidences in the medium periods and an increasing number of coincidences in the extreme
periods.

6.5. Analysis on the number of periods over the planning horizon

Multi-period problems assume that the number of periods in which the planning horizon is divided is given. For
enhancing the applicability of model MISFLP we next describe how it can be used as a what-if tool within a scenario
analysis for deciding the most appropriate number of periods when decisions are made, for achieving an equilibrium
between cost and quality of service. Note that, for a given data set and a fixed planning horizon, the value and the

M. Albareda-Sambola et al. / Computers & Operations Research 36 (2009) 1356–1375 1373

structure of the optimal solution can vary significantly depending on the number of periods in which the planning
horizon is divided. For example, if the planning horizon is one year, it is most likely that we obtain very different
solutions if we make decisions every month (12 periods) or if we make decisions on months 1, 4, 8 and 12 (4 periods),
even if the overall number of plants that are opened and the number of customers who are assigned throughout the
planning horizon are the same. Therefore, before setting the number of periods for a multi-period problem within a
given planning horizon, the decision maker should apply some trade-off analysis between cost and quality in order to
select appropriate number of periods.

When the number of periods is set to |T |, at each period t = 1, . . . , |T | decisions must be made for selecting the
new plants to be opened and the new customers to be serviced, in such a way that

∑
r � t pr plants are operating

and nt customers are being serviced. When the number of periods reduces from |T | to K, decisions will be made at
instants t1, t2, . . . , tK . Now it must be decided “when” to make the decisions, that otherwise would have been made
at t ∈ T different from t1, t2, . . . , tK , relative to the plants to be opened and the customers to be serviced at t. When
such decisions are made in an anticipatory fashion, at instant tr ,

∑
tr � t<tr+1

pt plants will be opened and ntr+1−1

customers will be serviced. On the other hand, if the decisions corresponding to instances different from t1, t2, . . . , tK
are postponed, then, at instant tr ,

∑
tr−1<t � tr

pt plants will be opened and ntr customers will be serviced. Another
possibility is to “distribute” the instants when the decisions are made in such a way that some are made in advance,
and some other are postponed. Indeed, if decisions are made in an anticipatory fashion, the level of service (number of
open plants and number of serviced customers) at instant t will be higher than when decisions are made in |T | periods.
However, anticipating the decisions also implies anticipating their associated costs. Thus, the overall cost over the
planning horizon will be higher. On the other hand, if we postponed the decisions, then the level of service at instants t
different from t1, . . . , tK , would be lower than when decisions are made in|T | periods. Hence, the overall cost over the
planning horizon will be smaller. When decisions are distributed, at some instants the level of service will be higher
than when |T | periods are taken, whereas at some other instants the level of service would be smaller. Summarizing,
the decision maker can use model MISFLP to analyze several possibilities regarding the number of periods and the
strategy chosen to make the decisions, according to the relationship between the level of service and its corresponding
cost in each case.

For illustrating our experiments again we use the reference instance with |T | = 12, |I | = 100 and |J | = 30. We have
compared the following scenarios:

(A) One single anticipatory decision in period 1.
(B) Four decision instants, t1 = 1, t2 = 4, t3 = 8 and t4 = 12, with anticipatory policy.
(C) Four decision instants, t1 = 1, t2 = 4, t3 = 8 and t4 = 12, with “distributed” policy, in such a way that the number

of decisions that are made in advance coincides with the number of decisions that are postponed. The number of
plants opened in period t1 = 1 is p1 + p2 and the number of assigned customers n2; the number of plants opened
in period t2 = 4 is p3 +p4 +p5 and the number of customers who are serviced is n5; the number of plants opened
in period t3 = 8 is p6 +p7 +p8 +p9 and the number of customers who are serviced n9; and the number of plants
opened in period t4 = 12 is p10 + p11 + p12 and the number of customers who are serviced n12.

(D) Twelve decision instants t = 1, 2, . . . , 12, where at instant t, pt new plants are opened and nt customers are
serviced.

(E) Four decision instants, t1 = 1, t2 = 4, t3 = 8 and t4 = 12, with postponed policy.
(F) One single postponed decision in period 12.

For each of the considered strategies at each instant t = 1, . . . , 12 we have calculated the accumulated objective
function so far, that is, the value of all the decisions made until that instant. These values are depicted in Fig. 5 for each
scenario. Table 6 reports the number of customers serviced at each instant with each strategy.

As was expected, since F and A have the lowest and the highest service levels, respectively, they also have the smallest
and the largest costs at all instants. Due to the way the strategies have been defined, zt

A > zt
B > zt

C > zt
E > zt

F, ∀t ∈ T ,
where zt• stands for the accumulated value for strategy • at instant t. Notice that the same relationship holds for the
respective service levels, as can be observed in Table 6. If we consider the strategy D with |T | periods, we also have
zt

B > zt
D > zt

E, ∀t ∈ T , as it happens with the associated levels of service. The only strategies that do not compare
uniformly are C and D. Both strategies coincide in level of service at times t =2, 5, 9, 12. At these times, the associated
values are always very close, and note that, in this example, strategy D gives always smaller costs. At the other instants,

1374 M. Albareda-Sambola et al. / Computers & Operations Research 36 (2009) 1356–1375

0

50000

100000

150000

200000

250000

300000

350000

1 2 3 4 5 6 7 8 9 10 11 12
period

co
st

F E D C B A

Fig. 5. Accumulated objective function value for different scenarios.

Table 6
Service levels attained by each strategy.

1 2 3 4 5 6 7 8 9 10 11 12

F 0 0 0 0 0 0 0 0 0 0 0 100
E 6 6 6 40 40 40 40 70 70 70 70 100
D 6 18 25 40 44 53 68 70 77 82 94 100
C 18 18 18 44 44 44 44 77 77 77 77 100
B 25 25 25 68 68 68 68 94 94 94 94 100
A 100 100 100 100 100 100 100 100 100 100 100 100

it always holds that higher values correspond to better services. Finally, notice that higher number of time periods
increase the level of service more gradually.

7. Conclusions

This paper introduces the multi-period incremental service facility location problem. The problem consists of finding
the pattern for opening plants and assigning customers to them throughout a finite time planning horizon that guarantees
the service to a pre-specified number of customers per period at the minimum total cost. The first part of the paper
studies different modeling issues. We propose an MIP formulation, and study some of its structural properties. In the
second part of the paper we use these properties in the design of an algorithm based on Lagrangean relaxation. As it is
shown in the computational experiments, this algorithm is able to find remarkably good solutions in small computation
times, despite the complexity of the considered problem. The computational experience also shows the convenience of
considering all decisions concerning different periods of the planning horizon within one single optimization problem,
and illustrates how to use the proposed model as a tool for choosing appropriate number of periods within a planning
horizon.

The study of locational issues related to the incremental service of a set of demand points has received relatively
little attention in the literature. This paper focuses on a specific multi-period location problem, but many variants can
be formulated with clear practical interest. In particular, whereas the objective function considered here includes the
costs of all the assignments in each period, variants considering only the largest assignment cost incurred per period
are also challenging problems that deserve the attention of researchers in the area. Other interesting related problems
include covering problems with sequential reduction of the coverage radius throughout a planning horizon.

M. Albareda-Sambola et al. / Computers & Operations Research 36 (2009) 1356–1375 1375

Acknowledgments

This research was partially supported by Spanish Ministry of Science and Education Grants: MTM2004-22566-E,
MTM2004-0909 and MTM2006-14961-C05-01. This support is gratefully acknowledged.

References

[1] Warszawski A. Multi-dimensional location problems. Operational Research Quarterly 1973;24:165–79.
[2] van Roy TJ, Erlenkotter D. A dual-based procedure for dynamic facility location. Management Science 1982;28:1091–105.
[3] Daskin MS, Hopp WJ, Medina B. Forecast horizons and dynamic facility location planning. Annals of Operations Research 1992;40:125–52.
[4] Galvão RD, Santibañez-González ER. A Lagrangean heuristic for the pk-median dynamic location problem. European Journal of Operational

Research 1992;58:250–62.
[5] Current JR, Ratick S, ReVelle CS. Dynamic facility location when the total number of facilities is uncertain: a decision analysis approach.

European Journal of Operational Research 1997;110:597–609.
[6] Chardaire P, Sutter A, Costa MC. Solving the dynamic facility location problem. Networks 1996;28:117–24.
[7] Drezner Z. Dynamic facility location: the progressive p-median problem. Location Science 1995;3:1–7.
[8] Hinojosa Y, Puerto J, Fernández FR. A multiperiod two-echelon multicommodity capacitated plant location problem. European Journal of

Operational Research 2000;123:45–65.
[9] Hinojosa Y, Kalcsics J, Nickel S, Puerto J, Velten S. Dynamic supply chain design with inventory. Computers & Operations Research 2008;35:

373–91.
[10] Kariv O, Hakimi SL. An algorithmic approach to network location problems ii: the p-medians. SIAM Journal of Applied Mathematics

1979;37:539–60.
[11] Kennington J, Wang Z. A shortest augmenting path algorithm for the semiassignment problem. Operations Research 1992;40:178–87.
[12] Beasley JE. OR-Library: distributing test problems by electronic mail. Journal of Operational Research Society 1990;41(11):1069–72 (Available

at: 〈http://people.brunel.ac.uk/∼mastjjb/jeb/info.html〉).

http://people.brunel.ac.uk/~mastjjb/jeb/info.html

	The multi-period incremental service facility location problem
	Introduction
	A mathematical programming formulation of MISFLP
	The allocation subproblem
	Lagrangean relaxation
	Upper bounds

	Algorithm
	Computational study
	General planning horizon, with one facility open per period
	General planning horizon, with an arbitrary number of facilities to open per period
	The =p-median problem
	Comparison with a decoupled model
	Analysis on the number of periods over the planning horizon

	Conclusions
	Acknowledgments
	References

